409 research outputs found

    Dissipation in a superconducting artificial atom due to a single non-equilibrium quasiparticle

    Full text link
    We study a superconducting artificial atom which is represented by a single Josephson junction or a Josephson junction chain, capacitively coupled to a coherently driven transmission line, and which contains exactly one residual quasiparticle (or up to one quasiparticle per island in a chain). We study the dissipation in the atom induced by the quasiparticle tunneling, taking into account the quasiparticle heating by the drive. We calculate the transmission coefficient in the transmission line for drive frequencies near resonance and show that, when the artificial atom spectrum is nearly harmonic, the intrinsic quality factor of the resonance increases with the drive power. This counterintuitive behavior is due to the energy dependence of the quasiparticle density of states

    Effect of Coulomb interaction on current noise in open quantum dots

    Full text link
    We analyze the effect of Coulomb interaction on the noise of electric current through an open quantum dot. We demonstrate that the ensemble average value of the noise power acquires an interaction correction even for a dot coupled to the leads by reflectionless point contacts, when the ensemble average conductance is known to have no interaction corrections. To leading order, the correction to the noise originates from the formation of a nonequilibrium state of the Coulomb field describing the interaction between electrons. We find the dependence of the current noise power on the electron temperature, the applied voltage bias, and the strength of the Coulomb interaction.Comment: 4.5 pages, 2 figure

    Interaction corrections: temperature and parallel field dependencies of the Lorentz number in two-dimensional disordered metals

    Full text link
    The electron-electron interaction corrections to the transport coefficients are calculated for a two-dimensional disordered metal in a parallel magnetic field via the quantum kinetic equation approach. For the thermal transport, three regimes (diffusive, quasiballistic and truly ballistic) can be identified as the temperature increases. For the diffusive and quasiballistic regimes, the Lorentz number dependence on the temperature and on the magnetic field is studied. The electron-electron interactions induce deviations from the Wiedemann-Franz law, whose sign depend on the temperature: at low temperatures the long-range part of the Coulomb interaction gives a positive correction, while at higher temperature the inelastic collisions dominate the negative correction. By applying a parallel field, the Lorentz number becomes a non-monotonic function of field and temperature for all values of the Fermi-liquid interaction parameter in the diffusive regime, while in the quasiballistic case this is true only sufficiently far from the Stoner instability.Comment: 11 pages, 5 figures. Appendix A revised, notes adde

    Orbital Response of Evanescent Cooper Pairs in Paramagnetically Limited Al Films

    Full text link
    We report a detailed study of the pairing resonance via tunneling density of states in ultra-thin superconducting Al films in supercritical magnetic fields. Particular emphasis is placed on effects of the perpendicular component of the magnetic field on the resonance energy and magnitude. Though the resonance is broadened and attenuated by HH_\bot as expected, its energy is shifted upward linearly with HH_\bot. Extension of the original theory of the resonance to include strong perpendicular fields shows that at sufficiently large HH_\bot the overlap of the broadened resonance tail with the underlying degenerate Fermi sea alters the spectral distribution of the resonance via the exclusion principle. This leads to the shift of the the resonance feature to higher energy.Comment: 8 pages, 4 figure

    The AdS/CFT correspondence in two dimensions

    Get PDF
    We review recent progress in understanding the anti-de Sitter/conformal field theory correspondence in the context of two-dimensional dilaton gravity theory.Comment: Contribution to the Proceedings of the Euroconference on "Brane New World and Noncommutative Geometry", Turin, October 200

    Density of States, Entropy, and the Superconducting Pomeranchuk Effect in Pauli-Limited Al Films

    Full text link
    We present low temperature tunneling density of states measurements of Pauli-limited Al films in which the Zeeman and orbital contributions to the critical field are comparable. We show that films in the thickness range of 6-7 nm exhibit a reentrant parallel critical field transition which is associated with a high entropy superconducting phase, similar to the high entropy solid phase of 3He responsible for the Pomeranchuk effect. This phase is characterized by an excess of states near the Fermi energy so long as the parallel critical field transition remains second order. Theoretical fits to the zero bias tunneling conductance are in good agreement with the data well below the transition but theory deviates significantly near the transition. The discrepancy is a consequence of the emergence of e-e interaction correlations as one enters the normal state.Comment: 9 pages, 5 figures; to be published in Phys. Rev.

    Temperature dependence of the superheating field for superconductors in the high-k London limit

    Full text link
    We study the metastability of the superheated Meissner state in type II superconductors with k >> 1 beyond Ginzburg-Landau theory, which is applicable only in the vicinity of the critical temperature. Within Eilenberger's semiclassical approximation, we use the local electrodynamic response of the superconductor to derive a generalized thermodynamic potential valid at any temperature. The stability analysis of this functional yields the temperature dependence of the superheating field. Finally, we comment on the implications of our results for superconducting cavities in particle accelerators.Comment: 7.5 pages, 2 figure
    corecore